A hydantoin isoform of cyclic N6-threonylcarbamoyladenosine (ct6A) is present in tRNAs
نویسندگان
چکیده
N6-Threonylcarbamoyladenosine (t6A) and its derivatives are universally conserved modified nucleosides found at position 37, 3΄ adjacent to the anticodon in tRNAs responsible for ANN codons. These modifications have pleiotropic functions of tRNAs in decoding and protein synthesis. In certain species of bacteria, fungi, plants and protists, t6A is further modified to the cyclic t6A (ct6A) via dehydration catalyzed by TcdA. This additional modification is involved in efficient decoding of tRNALys. Previous work indicated that the chemical structure of ct6A is a cyclic active ester with an oxazolone ring. In this study, we solved the crystal structure of chemically synthesized ct6A nucleoside. Unexpectedly, we found that the ct6A adopted a hydantoin isoform rather than an oxazolone isoform, and further showed that the hydantoin isoform of ct6A was actually present in Escherichia coli tRNAs. In addition, we observed that hydantoin ct6A is susceptible to epimerization under mild alkaline conditions, warning us to avoid conventional deacylation of tRNAs. A hallmark structural feature of this isoform is the twisted arrangement of the hydantoin and adenine rings. Functional roles of ct6A37 in tRNAs should be reconsidered.
منابع مشابه
Identification of 2-methylthio cyclic N6-threonylcarbamoyladenosine (ms2ct6A) as a novel RNA modification at position 37 of tRNAs
Transfer RNA modifications play pivotal roles in protein synthesis. N6-threonylcarbamoyladenosine (t6A) and its derivatives are modifications found at position 37, 3΄-adjacent to the anticodon, in tRNAs responsible for ANN codons. These modifications are universally conserved in all domains of life. t6A and its derivatives have pleiotropic functions in protein synthesis including aminoacylation...
متن کاملIndependent suppression of ribosomal +1 frameshifts by different tRNA anticodon loop modifications
Recently, a role for the anticodon wobble uridine modification 5-methoxycarbonylmethyl-2-thiouridine (mcm5s2U) has been revealed in the suppression of translational +1 frameshifts in Saccharomyces cerevisiae. Loss of either the mcm5U or s2U parts of the modification elevated +1 frameshift rates and results obtained with reporters involving a tRNALysUUU dependent frameshift site suggested these ...
متن کاملDiscovery of the β-barrel–type RNA methyltransferase responsible for N6-methylation of N6-threonylcarbamoyladenosine in tRNAs
Methylation is a versatile reaction involved in the synthesis and modification of biologically active molecules, including RNAs. N(6)-methyl-threonylcarbamoyl adenosine (m(6)t(6)A) is a post-transcriptional modification found at position 37 of tRNAs from bacteria, insect, plants, and mammals. Here, we report that in Escherichia coli, yaeB (renamed as trmO) encodes a tRNA methyltransferase respo...
متن کاملDiversity of the biosynthesis pathway for threonylcarbamoyladenosine (t6A), a universal modification of tRNA
The tRNA modification field has a rich literature covering biochemical analysis going back more than 40 years, but many of the corresponding genes were only identified in the last decade. In recent years, comparative genomic-driven analysis has allowed for the identification of the genes and subsequent characterization of the enzymes responsible for N6-threonylcarbamoyladenosine (t(6)A). This u...
متن کاملStructural and functional characterization of KEOPS dimerization by Pcc1 and its role in t6A biosynthesis
KEOPS is an ancient protein complex required for the biosynthesis of N6-threonylcarbamoyladenosine (t(6)A), a universally conserved tRNA modification found on all ANN-codon recognizing tRNAs. KEOPS consist minimally of four essential subunits, namely the proteins Kae1, Bud32, Cgi121 and Pcc1, with yeast possessing the fifth essential subunit Gon7. Bud32, Cgi121, Pcc1 and Gon7 appear to have evo...
متن کامل